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INTRODUCTION.

1. The course of lectures by Prof. Frank Morley during the winter of

1903-4 on cubic curves suggested this dissertation and prepared me to carry on

the research. The trend was largely determined by an incidental question by

Prof. A. Cohen as to the groups involved in the system of conies which I had

just presented to the Mathematical Seminary. The interest and valuable sug.

gestions of Dr. A. B. Coble in the carrying on of the work are gratefully

acknowledged.

2. The close connection between the Hesse group and the syzygetic pencil

of cubics makes it necessary to say at least something about this pencil of curves.

Without attempting even an outline of the theory, I present in Section I. only

such matter as is needed later, besides some new facts concerning the pencil and

a figure showing the appearance of some noteworthy and specially related cubics

of the pencil. No figure seems ever to have been published except that in con-

nection with the paper of Prof. Morley in the Proceedings of the London Math-

Society, Ser. 2, Vol. 2, Part 2, which shows arbitrarily selected cubics. The

initial and all but the closing work leading to that figure was done by me.

Therefore, I present a figure of the pencil herein, also one of the corresponding

polar-reciprocal range of line cubics.

Section II. shows how to derive a closed system of thirty-six conies analogous

to the conic of Section I. as to which the pencil and range are polar-reciprocal.

It also discusses the action of the polarities of these conies upon the four

inflexional triangles, and presents some history of similar considerations.

In Section III. there is given a brief history of the attempts to determine all

finite groups of transformations, and in particular an account of the Hesse Group
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4 Introduction.

of 216 collineations. Further, we derive and write down the matrices of these

collineations by means of the closed system of thirty-six conies, which are here

differently defined than in Section II. and are given accordingly. All the sub-

groups are found and discussed. The collineations are finally classified as to

periodicity.

Section IV. treats of triangles in other. perspective forms than six-fold as are

the inflectional triangles above. As a second way to secure triangles in three-

fold perspective, also some in two- and one-fold perspective, we develop what

we call the Complete Pappus Hexagon, in its dualistic forms and deduce a

number of theorems connected with it.



I.

THE SYZYGETIC PENCIL. DRAWINGS OF THE PENCIL AND RANGE.

1. The name stzygetic^ is given to the pencil of cubics determined by a

cubic/ and its Hessian A,
x/4-;iA = 0, (1)

which has the same nine inflexions for all its cubics, the intersections of the two

cubics /and A, and so has the same four inflexional triangles.

It is well known that any non-singular cubic may be brought in four ways,

as shown for example by Weber,
^ into Hesse's canonical form

xl-\- xl-\- xl-\- 6mxiXciXs= 0. (2)

This simply means that the cubic has been referred to one of its inflexional

triangles as reference triangle. The Hessian covariant of the form (2) is

A= — m^xf + xl-^xl)-^{l ^2m^)x,X2Xs. (3)

Its vanishing gives the Hesse Cubic or Hessian. Thus if m is the parameter of

the cubic (2) and m' is that of its Hessian, we have 6 m' = —
^
—

;
and

form (2) for all values of m from — oo to + <» gives the pencil as well

as form (1).

The relation between w and m' shows that each cubic of ike pencil has hut

one Hessian hut is Hessian to three cubics of the pencil.

Choosing one of the inflexional triangles as reference triangle, we readily

calculate in turn,

The coordinates of the nine inflexions,

Their arrangement on the sides of each of four triangles,
^

The equations of the sides and opposite vertices of these triangles,

1 Clebsch-Lindemann : Lecons sur la Geometric, II, p. 230.

"Lehrbuch der Algebra, 3. Aufl., II, §§ 106, 107; ss. 399-404.

8 C.-L. : II, (7) p. 233.



6 I. The Syzygetic Pencil. Drawings of the Pencil and Range.

The polar conies of the inflexions, which are in each case^ two right lines,

viz., the inflexional tangent and the harmonic polar of the inflexion.

For future reference we give the sides of the inflexional triangles :

A. B. C. D.

jCj
= 0. £Ci -f- a^g + ajg

= 0. o^ Xi -f- ccg + iCg
:= 0. co aji -f- ajg + aJg

= 0.

052=0. a^i + a>^iC2 H-G)iC3= 0. JCj + C0^iC2+ JC3= 0. «! -f G) ^2 + iCs
= 0- (4)

Xg = 0. jcj + G) ir2 H- o^ iCa
= 0. iCj + a;2 + "^ s-g

= 0. iCi + a^ + o) JC3
= 0.

The equations of the vertices respectively opposite are given by exchanging

^ for X and interchanging a and o^. a and o^ are the complex cube roots

of unity.

2. Some Particular Cubics of the Pencil.

(a) The cubics whose parameter m is respectively 00,
—

^,
—

\a?^
—

^co

are the four inflexional triangles in the order as obtained above, of which ^ two

are real and two imaginary. The polar line^ as to these triangles of any pointy
has coordinates respectively,



I. The Syzygetic Pencil. Drawings of the Pencil and Range. 7

likewise the conies m^l — ^3^1, and m^l — ^1^3. So the net, has a corre-

sponding weh of apular conies, given by the equation

where the jy's are parameters.

The contravariant or Jacobian of the web is the Cayleyan :

2 w ^1
—

^3
—

^2

-^3 2771^3 —^1 =0,
—

^2 —^1 2 771^3

or wa? + ^i + ^i) + (l-4m^)^i^3^3 = 0,

which is a cubic of the range^ enveloped by the oo^ lines composing the degenerate

conies, the first polars of points along the Hessian of the cubic.

Here as in the case of the Hessian, we see that each cubic of the range has

but one Cayleyan but it is Cayleyan to three cubics.

(c) The simplest invariant is found by operating with the Cayleyan on the

cubic. ^ It is the quartic invariant denoted in Salmon by S. By operating

thus and dividing^ by 24 we have

S = m{l — m^).

The vanishing of this invariant gives the parameters of four curves of the pencil

called the equianharmonic cubics :

jS^: xl-\- xl+ xl = 0. Ssi xl-{-xl + xl + 60^x^x^X3= 0.

^Sg : ccf + x| + aj| -f- 6 Xi ccg 2*3
= 0. S^: a:? + a^l + xi + 6 Xj Xg ccg

= 0.

This name is given because the constant anharmonic ratio of the four tangents*

drawn from a point of the curve tangent to the curve itself is equianharmonic
in these four cases.

(d) By operating with the Cayleyan on the Hessian we have the sextio

INVARIANT, T of Salmon.^ It is

T=l — 20m^—8m^.

iC.-L.: II, p. 344.

2 By operating with a line-form, as of the Cayleyan, upon a point-form, as of the cubic (2) called/, we
mean that the f's are taken as partial differential operators. The equation of the Cayleyan means in this

process

3 Salmon: H. P. C, §220, p. 191.

*C.— L.: II, pp. 325, 326.

5H. P. C, §221, p. 193, also Weber: II, s. 406 (7).



8 I. The Syzygetic Pencil. Draxmngs of the Pencil and Range.

The curves whose parameters are given for 7=0, are the six harmonic cubics

of the pencil, called so since the ratio of the four tangents to the curve from

points on it is harmonic. ^

With this amount of introduction and number of references necessary to

prepare the student to read the whole most profitably, and with the equations
at hand to which reference must later be made, we pass now to

The Drawing of the Syzygetic Pencil.

3. As a far more convenient form of the cubics of the pencil for purposes
of construction, we transform the equation of the pencil so as to have inflexions

at the circular imaginary points / and /, by putting

aa = a; + y + 1, x^ = — {x—\), xs = — (y—l), (6)

where x and y are conjugate coordinates.

By this transformation, equation (2) of the pencil becomes

or it is of the form

xy{x-\-y) + (i{a^-\-xy-\-y')-{-l= 0, (7)

, 2(1—m), 2— u
where u = / . ^

—<-

,
and m = ^ .

,

^
,

.^
1 + 2m '

2(1 + ^)

4. The Special Cubics of § 2.

(a) The four inflexional triangles (4) become in conjugate coordinates,

A: {x + y+l){x— l)(y-l) = 0.

B: a? + xy-\-f — (x
—

ciy){x
—

(J'y)
= 0.

C: xy{x-{-y)-(^ia^-^xy'hf)-\-l = 0.
^ ^

D: xy{x-^-y)
—

ci^3^-{-xy-\-y^) + l = 0.

Our former reference triangle A is seen thus to be now the line through the

points G) and o^ on the unit-circle, and the point x= 1 taken twice.

Since the cube terms are lacking in B, the cubic consists of the line at

infinity, also, as readily seen, of the lines through the origin and o and u>^

respectively. The representable parts are shown in the figure of the pencil.

The three dash lines are the real harmonic polars, the full lines are the

degenerate cubics.

» C.-L. : II, p. 326.



I. The Syzygetic Pencil. Drawings of the Pencil and Range,

(h) The Hessian by direct calculation on (7) is

1



10 I. The Syzygetic Pencil, Drawings of the Pencil and Range.

The Jacobian of this web is by direct calculation

tin— 2 /t*(^+2>7) —(2^ + ^2)

2^— >7
— ^4-2>7 —ii

or 2^(f+>7^)-3^^,7(^+>7)H-(^^-2)(f-^,7+>7')-i^'(^->7)-i^=0, (10)

which is the Cayleyan of the cubic (7).

(c) By operating with the Cayleyan (10) on the cubic (7) we have the

qnartic invariant o 4
j,

whose vanishing gives the parameters of the four equianharmonic cubics of the

pencil, viz., /tz
=

0, 2, 2{o, 2(a^ That two of these are real is seen from the

parameters.

(d) By operating with the Cayleyan on the Hessian (9) we obtain the

sextic invariant

T=S — 20(1^
—

fi\

whose vanishing gives the parameters of the six harmonic cubics, viz., the roots

of
|it^
= — 10 ± 6 Vs. For the positive and the negative sign, there are in each

case one real and two imaginary roots, or there are two systems of three values

each of the harmonic ratio. The two real roots are

—
(1
— V3) and — (1 + V3).

5. The nine inflexions and harmonic polars mentioned in §1, pp. 5, 6 are

in conjugate coordinates as follows, with the positions on the figure as indicated

respectively
—

Inflexions. Point on figure. Its Harmonic Polar.

1. At 00 on 6)0)^ X — y=0
2.
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By projecting the pencil into this form, we have the line at infinity as one

real side of an inflexional triangle, and one real inflexion at infinity. That

leaves^ to appear on the figure three sides of inflexional triangles, two inflexions

and three harmonic polars.

Towards a better understanding of the syzygetic pencil and the drawing of it

we analyze it further and present first amongst our findings.

6. The Asymptotes.

Take the line a: + y = X, which is perpendicular to the axis of reals at a

distance ^7^ from the origin; that is, the line in which the reflexion of the origin

is the point 7.. It cuts the cubic (7) where

Xx(a — a) + /^(a;2
— XiB + X^) + 1 = 0.

Since the cube terms vanish, the line meets the cubic at infinity. If next we put

X =
/[i,

we have only
^3+1 = 0.

Hence, since the square terms also vanish, the line x -\- y = ^ is tangent to the

cubic at infinity, in direction perpendicular to the axis of reals and is the

asymptote.
The point at infinity on the line uuF, perpendicular to the axis of reals is as

above noted one of the real inflexions, hence the asymptote just found is an

inflexional tangent as well.

Thus when
^i

is given, the asymptote of the cubic of the pencil for that

particular ^ as parameter is also given as the perpendicular to the axis of reals

at the distance ^^ from the origin.

7. By taking the first polar of the inflexion q as to the general cubic (7)

we find it breaks up into the two linear factors

\x
—

G)Z/-f-t^
—

If jw^(ic
—

uiy
—

6)-|- \) \- ^ {x
—

o^2/)[
=^

^)

the harmonic polar and flex-tangent respectively.

The latter cuts the asymptote of the cubic where l/^

—
(1 + |ti)(G)x + oV — "^+ 1)

= 0.

The harmonic polar of uf' [see equations (11), p. 10] cuts the asymptote

where — (g)£c + g)^^
— o^ -f- 1)

= 0. Therefore, we may draw the flex-tangents

to any cubic ofpencil hy drawing from either inflexion, 6> or u^, to the point where

the harmonic polar of the other, w^ or o, cuts the asymptote of that cubic.

1 C.-L. : II, p. 235 on the real parts of the figure.



12 T. The Syzygetic Pencil. Drawings of the Pencil and Range.

8. Intersections of the Cubics with the Axis of Reals.

The general cubic (7) cuts the axis of reals where

2ic^+ 3|Ma^4- 1 = 0.

The discriminant (Weber: I, s. 273) of this equation is

D = — 108(^^4- 1),

which shows that if

1.
ft <;

—
1, then Z> ]> 0, and the equation has three real distinct roots.

2.
/u
= —

1, then D = 0,
" *^ " " one real repeated root.

3. fi'p-
—

1, then i> <:^ 0,
" " " " one real, two imaginary roots.

As to the cubics this says that

1. foTfK^ — 1, the cubic cuts the axis of reals in three points and hence is,

in general, of the bipartite type.

2. for
/^
= —

1, there is one actual intersection and an acnode on the axis,

as was noted in § 4 (a), p. 8.

3. for ^ >- — 1, there is but one real intersection and the cubic is of the

unipartite type.

The study of these intersections thus enables us to classify the cubics from

the parameter.

9. Besides the aids in constructing the syzygetic pencil furnished by these

facts as to the asymptotes, the inflexional tangents, and the intersections of the

cubics with the axis of reals, we present, as the final means of facilitating the

construction, the drawing of a number of circles concentric with the unit-circle

and the calculation of the intersections of the cubics with these circles.

The cubic (7) cuts the circle xy = p^
where

Since x and y are conjugate complex coordinates, a: + «- = c is a right line

perpendicular to the axis of reals at a distance ^ c from the origin. Therefore,

the cubic cuts the circle where this perpendicular does, for values of c which are

the roots of the equation in fic + ^
J

.

The location of the perpendicular is given by

4fi
^ '
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10. Two interesting matters of analysis will be noted before presenting

the drawing. The Hessian cubic whose parameter is
^i'

is Hessian to three cubics

whose parameters are the roots of

^3 + 3^^3 + 4=0. (13)

Their asymptotes cut the axis of reals at i
/[^ resp. The Hessian itself cuts the

axis of reals at points given by the roots of 2a;3 + S/tz'cc^ + 1 = 0.

If we put in this equation x=-\^i, we obtain identically the former

equation. Therefore, the Hessian cuts the axis where the asymptotes of its

curves do, and these asymptotes are its tangents on the axis of reals. Or, for

this form of the pencil, we may say, the Hessian is tangent on the axis of reals to

the asymptotes of its curves.

Since the axis of reals is the harmonic polar of the real inflexion at infinity

and the asymptotes are flex-tangents at this inflexion, we may state the theorem

projectively :

The three flex-tangents of the three cuhics with a common Hessian, at any one

inflexion, touch this Hessian in three points on the harmonic polar of the inflexion

considered.

This is an extension of theorems by Alfred Clebsch^ and Peter Muth.^

The discriminant of equation (13) is Z> = — 432 (^'^ + 1). Thus, if the

Hessian is bipartite, i. e., if /u'<]
—

1, there are three real unipartite cuhics of which

it is Hessian; for the roots of equation (13) are then all real, two positive and

one negative but greater than — 1.

If
(i'
= —

1, its cubic is Hessian of the cubics whose parameters are

—
1, 2, 2. That is, it is Hessian of itself and of one of the two real harmonic

cubics twice over.

If the Hessian is unipartite it is the Hessian of one real, bipartite cubic.

Since our names unipartite and bipartite, following Salmon, are actually

names of the cubics von Staudt calls resp. odd- and even circuit cubics, and

since 3
by no projection does a non-singular cubic change its class of odd- or even-

circuit, these facts as to the Hessian and its cubics remain for all real projections.

11. The two real harmonic cubics are readily seen to be mutually Hessian

and cubic, for the parameters
—

(1 + V3) and — (1
—

\/3) may be interchange-

ably (J,
and fi' and satisfy equation (13).

1 Ueber die Wendetangenten der Curven dritter Ordnung ;
Crelle Journal 58, s. 232.

^Ucber ternare Formen, u, s. w.
; Inaug. Diss Giessen, 1890, s. 15.

SC.-L. : II, end of foot-note p. 223.



14 I. The Syzygetic Pencil. Drawings of the Pencil and Range.

Therefore, the flex-tangents of each touches the other and so, in our form,
each cuts the axis of reals at the asymptote of the other. Compare Clebsch in

Crelle Journal, Bd. 58, ss. 238, 239.

12. For the form (7) of the pencil, the two invariants are got very nicely

as the invariants of the quartic
^

giving the intersections of the four tangents

from the real inflexion at infinity.

As shown in § 6, p. 11, the flex-tangent at infinity cuts the axis at a; = ^jw,

and in §8, p. 12, the cubic cuts the axis at 2ic^ + 3//a:^ -f- 1 = 0. Therefore, the

intersections of the four tangents from the real inflexion at infinity are given by
the quartic (2 a^ + 3/1^0^ -|- 1) (2x

—-
/i^)
=

0, or

4ic* + 4^a^— 3^^0:2 -f 2a; —
/[i
= 0.

The invariants^ of this quartic are those of the cubic, given in § 4, (c) and (cZ),

to within a numerical factor.

The Syzygetic Range of Cubics.^

13. The invariant parts of the syzygetic pencil just studied are well known

and are known to correspond dualistically throughout. In view of this corre-

spondence it is observed that the polarity arising from the conic

a;SH-«i + «i=o, (14)

namely, «i = ^i, 3^2
= ^2, «3 = ^8,

sends each part into its corresponding part, also the point-cubics of the pencil

into the line-cubics of range,

^f+e + ^i+6m^i^3J3 = 0. (15)

The conic (14) transformed into conjugate coordinates becomes

2(a^-f a;2/ + 2/^) + 3 = 0,

which equation shows the conic to be an hyperbola with the inflexional lines

(see -B, (8), p. 8) x — (ay = and x— id^y = as asymptotes, with vertices at

±: hi^/Q. Transformed to rectangular coordinates with the axis of reals as the

X-axis, it becomes 6X^ — 2 F^ -|- 3 = 0; and with the asymptotes as axes it is

XF= — '. From this equation we easily construct the conic by considering

the equality of segments of chords contained between the curve and its

asymptotes.

1 Salmon: H. P. C, §228, p. 199.

« Weber: I, $ 70, 8. 230; II, § 108, s. 406.

•C.-L.: II, p. 244 sq.
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Fig. 1.—The Syzy'getic Pencil of Cubics.



Fig. 2. — The Syzygetlc Range, polar reciprocal of Pencil as to Conic
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By the polar- reciprocal process as to this conic we deduce the line-cubics of

the syzygetic range from the point-cubics of the pencil. The harmonic polars

are seen to become the cusp-tangents common to all the curves of the range.

Explanation op the Figures.

The Syzygetic Pencil. The inflexional lines are solid. The harmonic

polars are dash lines. All cubics are marked with their parameters. Specially

related ones are the same kind of lines.

The cubics represented are :

1. Two equianharmonic, ^ ^ and 2.

2. Two harmonic, ii=.
—

(1
—

V^S) and — (1 + VS). They cut the axis

of reals respectively at — i (1 + VS) and — J (1
— V3); the former is uni-

partite, the latter bipartite. Their inflexional tangents from u and o^ are drawn

in fine dotted lines.

3. The cubic for which
/[^
= — § is Hessian of three for which ^ is resp. 4,

1.132f,
— 0.88 2^. These four are drawn alike.

4. The cubic ^ =: ^ is Hessian of but one real cubic for which ^^=^
— 2.

5. The equianharmonic cubic, ff
=

0, is also Hessian of but one real cubic

for which ^ = — \/4. It is draw different from the others.

The Syzygetic Range. The majority of the above cubics were reciprocated

in the conic shown on the figure and the polar-reciprocal line-cubics appear

drawn in the same kind of lines as the corresponding point-cubics from which

they were derived and are named with the same value of ^ respectively.

Clebsch has a drawing (C.-L.: II, p. 243) of the range but does not profess

it to have been constructed. Its form is very considerably diff*erent from the

accompanying drawing.

II.

ON A CLOSED SYSTEM OF CONICS.

14. The conic (14) of § 13, p. 14, is referred to triangle A of equations (4),

p. 6, as reference triangle with the first line of B (ibid.) as auxiliary line. Its

effect on the parts of the syzygetic pencil as given in § 13, raised the question as

to the effect of the analogous conies as to all the possible reference frames in the

four triangles (4).

The equations of these analogous conies may be got by considering separately

each of the four triangles as reference triangle with the nine remaining lines in



16 II. On a Closed System of Conies.

turn as the auxiliary line. Thus, there are thirty-six such conies, nine for each

triangle. As an example, say we wish to consider triangle B and the first side

of triangle G as reference frame. Then,

Sci
= &) a^i + Ci) ^2 + " ^3 = 0,

x'2= oci + o^a-g 4- oajg = 0,

Xs = Xi -\- (dX2 + (0^ Xg =z
,

whence x[ -\- X2 -\- Xs= (o^ +2 6)) (cj^ccj + iCg + a^)
= is auxiliary line as we

desired. The conic x[^ -f- x^'^ -f jcg^
= has therefore as to the original reference

frame the equation

a xl -i- xl -^ xl -\- 2 {0x^X3 -^ XqXi -\- X1X2) = .

Similarly by inspection all the others may be deduced.

The equations of these conies will be given in the next chapter where they
are derived differently and their properties are defined. Their development as

above was published in The Johns Hopkins University Circular, January 1905,

pp. 16 ff.

These thirty-six conies form a closed system for by operating two times with

a polarity arising from any conic of the system we get a polarity of the system ;

or, the product of three polarities of the system is a polarity of the system.

It is easily shown that when a conic reciprocates a triangle into another,

the two triangles are in perspective, and conversely. For two triangles in n-fold

perspective there are n such conies, so for the four inflexional triangles, mutually

in six-fold perspective, there should be six times ^Gz or thirty-six conies,

as there are.

15. As to their effect upon the inflexional triangles, the polarities divide

into sets in two ways. First, by nines Ai_q, 5i_9, etc., they send the vertices

respectively of triangles A, B, etc., into the sides opposite, and at the same time

reciprocate another triangle into itself and the vertices of each of the other two

triangles into the sides of the other of these two triangles. Second, they divide

into sets of six each, operating as indicated in the table :

Polarities. Triangles. Triangles.

into themselves

send A and B respectively, and G and D into each other
-^1-8 J
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The classification shows also that besides the nine polarities which send a

triangle into itself, vertices into sides opposite, there are nine others sending it

into itself, but vertices into sides in anti-cyclic order as to the order of the vertices.

We shall speak of the three cyclic and the three anti-cyclic forms of per-

spective, meaning as indicated here.

Cyclic Forms. Anti-cyclic Forms.

V 2' Z'

'

V 2' Z'12 3 13 2

2 3 1 2 13
3 12 3 2 1

As analysis readily shows, the projecting rays are the nine harmonic polars

with four vertices of the triangles on each. The centers of perspective are the

vertices of the triangles, and the axes their sides. Further, for any two of the

triangles, the vertices and sides of one of the remaining two triangles are

respectively the centers and axes in cyclic order for the three cyclic per-

spectivities, and those of the other triangle respectively in anti-cyclic order are

centers and axes for the three anti-cyclic perspectivities.

16. "We would call attention to two very neat papers on perspective triangles

by J. Valyi.^ He makes a slight error as to 6-fold perspective triangles by saying,

"Unter den 6 Kegelschnitten giebt es hochstens vier reelle, die beiden Dreiecke

sind immer imaginar," whereas our equations (4), p. 6, show one whole triangle

and one side of the other may be real.

After publishing the article in the J. H. U. Circular (§ 14, p. 16), I found

the following papers by S. Kantor.

In 1895 he notes ^ the 36 collineations, in connection with two triangles in

6-fold perspective. The following year he speaks^ of 36 conies in connection

with the four Hesse Triangles. He uses these conies, which are the 36 herein

presented but defined differently as stated in Th. XIII and used to operate on

the collineations of types 5, 6, 7 of Jordan * to produce the most general group
of correlations which contain these types.

By finding the "intermediate^^ or Salmon's contravariant conic <I)^ of each

1 Archiv der Mathematik und Physik: 1882, Bd. 70, ss. 105-110; 1884, 2. R., II. T., ss. 230-234.

^Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, (Berlin) a. 58.

»Crelle Journal, Bd. 116, ss. 176, 177.

*Ibid., Bd. 84, s. 92.

5 Salmon-Fiedler : Kegs, 6. Aufl., II, s. 668.

I
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two conies in the 36 and remembering the geometrical meaning of the inter-

mediate, we learn the relative positions of the 36 conies. Also, this process

gives us other sets of line-eonies mostly of 27 each but none are the 27 having
six-fold contact with a cubic of the pencil

^ as we hoped. These intermediates

are not sufficiently pertinent to our subject to be given here.

111.

THE HESSE GROUP OF 216 COLLINEATIONS.

17. History and Bibliography.

The attempts to determine all finite groups of transformations run back to the

work of F. Klein in the number for July 1874 of the Sitzungsherichte der Erlanger

phys.-med.Gesellschaft : Ueber binare Formen. Again in 1876, Math. Ann. 9:185,

he sets the problem, '*Alle Gruppen anzugeben, welehe aus einer endlichen An-

zahl von linearen Transformationen bestehen," and proceeds to determine them by
the method of rotations of the regular polyhedrons into themselves respectively.

In 1876, L. Fuchs in Crelle Journal 81:97-142, and the following year

P. Gordon in Math. Ann. 12 : 23-46, confirm the results of Klein for the binary

domain by entirely different methods.

Camille Jordan in a notable memoir (1878, Crelle Journal, 84:89-215)
tried to give completely the groups of both the binary and the ternary domain.

He discovered the group 6^210, mentioned ibid. p. 206 and called the Hesse group.

He had noted its existence before the writing here cited as he therein states.

Two years later (1880), Jordan devotes himself directly to the group problem

in a memoir in the Atti della R. Accademia d. Scienze Fisiche e Math. Societa

Reale di Napoli, Vol. VIII, No. 11, pp. 1-41. It is worthy of note that Jordan

did not find the simple group (xjeg, discovered by Klein [Math. Ann. (1879)

14:428-471].

Next, in 1887, the Hessian group is considered by Alexander Witting in hie

inaug. diss. (Gottingen, 58, S. 8) by the use of hyperelliptic functions.

Heinrich Maschke gives the fullest treatment of the subject. See Math.

Ann. 29:157 ff .
;
Nachrichten d. K. Gesellsehaft d. Wiss. zu Gottingen, (1888)

Nr. 5, ss. 78 ff.
;
and especially in connection with his presentation of the group

of 51840 transformations (Math. Ann. 33 : 317-344) in 1889.

«lbid.: Hohern Eb. Knr., 8166, 8. 178.
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Again in 1889 we have an important memoir by H.Valentiner: ''De endlige

Transformations -Gruppers Theori," in Copenhagen- K. Danske Videnskabs.

Selskab., Naturvid. og Math. 6. Raekke V. : 2, pp. 67-204; French resum6

pp. 205-235. Valentiner shows rather clearly that he did not know of the

memoire of Jordan and on pp. 151, 222, denies the existence of the group of

216 collineations. He demonstrates (p. 69) the possibility of a group of 72

transformations containing ones of 2nd, 3rd and 4th order, where the trans-

formations of the 4th order by sixes have a common second power. Later he

shows that the group really exists. He discovered the group G^^ and presents

it on pp. 191-198, French pp. 231-233.

A. Wieman refers to the Hessian group in connection with his paper in

Math. Ann. 47:531-556: " Ueber eine einfache Gruppe von 360 ebenen

Collineationen," (1896), and of course in his article on ''Endliche Gruppen
Linearer Substitutionen" (1900) in Encyklopadie der Mathematischen Wissen-

schaften, Bd. I, H. 5, 3 f. (See p. 528.)

S. Kantor's paper referred to in § 16, p. 17, though written in 1896, makes

no provision for nor mention of G-seo discovered at least seven years before.

In the Kansas University Quarterly of January 1901, H. B. Newson

presents ''The Group of 216 Collineations in the Plane," from the one to eighteen

correspondence with the tetrahedral group. This paper was not known to me
when my note was made in the J. H. U. Circular of Jan. 1905.

18. Relative to the Hesse group the purpose is to derive its collineations

by purely geometrical processes from certain conies.

Theorem. Three point-conics such that each is apolar to the remaining two in

line form give rise to and determine the syzygetic pencil of cubics in the Hesse

canonicalform .

The three conies a? + 2 w XgXg = 0,

xl+ 2mxsXi=0, (16)

xl + 2mxiX2 = 0,

are of this sort
;
and it has been shown that in the net of conies determined by

three arbitrary conies there are just four sets of three conies each of this type,

and that those of each set are tangent at the vertices by twos to the sides of one

of the four inflexional triangles of the cubic of the net of conies.

The Jacobian^ of these forms (16) is the cubic curve, the locus of points

iC.-L. : I, p. 378.
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whose polars as to the three conies meet in a point, which point is also on the

cubic and has the former point as its correspondent in the same way as it is of

that point. The cubic /is then

/ =
^1
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D1S3'. a/ Xi -\- xl -{• xl -{- 2 o)^ {co^ Xi x^+ a^s «! -}- a^i a^a)
== 0-

DiS^: xl -}- io^ xl -{- xl -{- 2 0)^ {x2 x^ + co^ x^ x^ -\- x^ X2) = 0.

1)3/^3: xl-\-xl-\- o)^ ajg+ 2 ft>^ {x2 a*3+ a^g cci + «>^ ^i ^2)= 0.

-4i /S'3 : x\ -\- 2 0/ X2X3=z 0.

AiSzi a^H- 2w^a;3a;i= 0.

AsSs'. »! -f~ 2 <o^ a?! a;2= 0.

-Si/8'3: a;?4- a;H-a;l-J- 2w2(a;2a;3 + a;3a;i + ^i^3) = 0-

^2 'S^s 5 »! -J- a> a^l 4" ^^ ^H~ 2 o>^
(a^a a^s + w a^s a^i+ w^ x^ x-i)

= 0.

BiS^: x\ -\- 0)^ xl -\- CD xl •\- 2 o? [x^ x^ -\- o? XzX-i-\- m x^ a^) = 0.

Ax^i'. a;? -f- 2 a> a^a a^a= 0.

A<iSC' a;2 + 2a>a?sa;i= 0.

A^H^'. a;3-|- 2tt>a;ia;2:= 0.

-Si 'S'4 : x\-^x\-\-x\-\;-2oi (ajg x^+ a^s a^i+ ^1 ^2) = 0.

BzSi'. a;J-|- wa;! 4-^^2;3-j- 2w(a;2a;3+ coa;3a;i4- w^a^ia^g) = 0.

B^Sii xl -{- 0)^ xl -\- a) xl -\- 2 0) {x2 Xs -\- 0)^X3 Xi-{- (o x^ x^ = 0.

C\ ^4 : o)x\ -^ x\-\- xl -\- 2 (1) {(o XiXz-\- XzXx-\- XiX.^ =z 0.

(72/8'4: a;i4-(wa;2 + a;3 4- 2ft>(a;2a;3 4-<wa;3a;i4-a;ia;2) = 0.

CzS^: «? + a;^ + wa;|+ 2w(a;2a;3+ a;3a;i-|-a>a;ia;2)= 0.

These conies form a closed system as explained and are in the same order

except ^2^3 ^^^ BiS^ as if derived as in § 14. Further, the line-forms are given

by interchanging o and o^ and writing ^^ for x^. We name point-conics with

Roman caps; the same letters in script name the corresponding line-conics.

20. The Conics as Source op the 216 Collineations.

The product of a point-conic on a line-conic is a collineation. With this in

mind we form a multiplication table with the point-conics along the left side

and the line-conics along the top. The 216 collineations are written in matrix

form and are numbered. The number is put in the square on the table corre-

sponding with the two conics which produce the collineation of that number.

Thus arranged the collineations were readily classified, from their actions on the

inflexional triangles (and for simplicity on triangle A) into the tetrahedral

subgroups.

In the multiplication of matrices remember that the separate terms of the

ROWS UPON the terms of the columns of multiplicand give rows of product.

In numbering I put ajh, where a is the number of the collineation given

and h is that of the one having g) and a^ interchanged.
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21. The 216 Collineations.

1

1

10

79/94
10

1

w2

85/103

2/3

CO

11

4

1

12

10
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109/127
co^ 1 1
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Ai Si , A2S1, J-g Si , AiS-z, A2 S2 ,
and Gi S^ ;

with the point-conics Ai Si and

Ai S2 . All the 216 collineations can be deduced from these conies and no other

collineations arise therefrom.

The Tetrahedral Stjb-Groups.

23. The sub-groups arising from the isomorphism with the 6^13 in the

plane are these :

to the identical transformation corresponds 1 Gi^ ,

" "
3 sub-groups G2 correspond 3 G^ss's,

" '* 4 " "
Gs

" 4 G^'s,
" "

1
'' "

Gi corresponds 1 6^73.

The four flex-triangles are regarded as the four faces of the regular tetrahedron.

The collineations naturally then transform the four triangles thus :

The triangles AB CD are sent respectively

into " A BCD by collineations 1-18,
" " BADC '' "

19-36,
" " CDAB '' "

37-54,
" " DCBA " " 55-72.

The first eighteen form the identity Gi^-, the other three sets of eighteen

each, each with the collineations of the Gi^, form the three G^s which inter-

change the triangles by twos. All these form the one 6r^3, which permutes
all four triangles.

Next the triangles are permuted as follows :

triangles AB CD are sent respectively into triangles

ADB C by collineations numbered 73-90,
1.

2.

3.

4.

ACDB
DBAC
CBDA

{ DACB
\bdca
CABD
BCAD

91-108,

109-126,

127-144,

145-162,

163-180,

181-198,
199-216.

The collineations of each of these four sets in connection with those of the 6^13

form a sub-group G^i , leaving one triangle unaltered and permuting the other

three cyclically.
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The collineations of the Gig of course send each respective inflexional triangle

into itself, but not point for point in each case. A comparison of the G^^ with

respect to triangle A at once shows that, since A is, therefore, each triangle is

sent by three collineations identically into itself. The collineations doing this

are in each case identity and two of those of period three. Thus the action of

identity and the eight of period three is accounted for. The remaining nine

collineations of period two divide, differently for each triangle, into sets of three.

Those of each set act the same on the triangle considered, sending one vertex

into itself and interchanging the other two; that is, in other words, as is seen

by comparing the equations of the harmonic polars, one of the three harmonic

polars on the fixed vertex of the triangle remains, being the fixed line of the

collineation, and the other two harmonic polars on that vertex are sent the one

into the other.

Other Sub-Groups.

24. These sub-groups are those observed by noting the effect of the

collineations on the 36 conies. Notice that the conies naturally divide into sets

of nine, each set composed of three sets of three.

By examining the collineations of the G^^ we readily see that numbers

1, 4, 5, 10, 11, 12 form a dihedral group Gq, sending conic B^Si into itself.

Hence from symmetry, there are 12 dihedral G^s, one for each set of three

conies. These sub-groups each contain the identity collineation, two of period 3

and three of period 2
;
there is thus in each dihedral G^ a cyclic G^ which is an

invariant sub-group. So the transform of one of the collineations of period two

by one of the G^ is one of those of period two.

The 6^18 contains identity, eight collineations of period 3 and nine of period 2.

The former ones compose four cyclic G^s ;
the latter with identity compose nine

cyclic G28.

Next, we observe that the collineations of the three sets of 18 each which

with the 6^18 ^o^m the (r^g, are all of period four. These by sixes have a common

second power. See Valentiner loc. cit. p. 69. These nine second powers are the

nine collineations of period two. So one transformation of second order, the two

of fourth order which produce it, and identity form a sub-group of period four.

Thus there are twenty-seven cyclic G^&. It seems strange that Valentiner

should have overlooked and even practically denied the existence of the G^2i6>

when he knew there must be 54 transformations of period four, and states that

this number is \ N, where N represents the total number of transformations.
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He further gets the (r^g with its sub-groups. I am inclined to question the

complete accuracy of the French resume for at the end of §45, pp. 173, 227,

the Danish and the French are exactly contradictory.

The cyclic G^b divide the conies into sets of two and four, half of a set

belonging to each of two natural sets of three.

In each of the eight sets of 18 each, which remain to be considered,

9 collineations are of period three and 9 of period six. These former of each of

the four sets (1, 2, 3, 4, p. 25) of thirty-six with identity form 9 cyclic 6^3's, or

in all 36 more cyclic (rg's making the total number 40 cyclic G^n. These 6^3's

separate the conies into sets of three and permute them in the set. Further,

the collineations of period six in each set of 36 appear by twos in 9 cyclic Gq9,.

A cyclic (rg ,
different from a dihedral (rg ,

contains two collineations of period 6,

two of period 3, one of period 2, and identity. There are thus from each set of

36 collineations above mentioned, together with the 9 of period two and identity

each time, nine cyclic G^b or in all 36 cyclic Gq&. These separate the conies

into sets of nine. Two of the collineations of a G^ send one of the nine conies

into itself, two more send the same conic into each of the other two of its natural

set of three, and the remaining two, which are of period six, send it into one of

the remaining six conies of the set of nine.

Jordan says, loc. cit. p. 18, that a group G belonging to this (Hessian) type

(of order 24*94)) contains a group H of order 27. "The substitutions of G are

permutable with ^." In each G^ there is such a group 6^37 consisting of the

26 collineations of period three and identity. So further we have 4 6^27's.

Three of the collineations of period three from each lot of 36 above referred

to, together with two of the eight of order three in (rig, and identity, form an

Abelian 6^9. Thus finally there are four Abelian 6^/s.

25. To recapitulate, the Hesse group contains besides the sub-groups of

§ 23, these others :

9 cyclic G^s, 40 cyclic 6^3's, 27 cyclic G^s, 12 dihedral G^s, 36 cyclic (rg's,

4 Abelian G^'s and 4 G^^b. These arrange themselves in interesting form on the

multiplication table as the heavy rulings help to indicate.

The classification as to periodicity is

1 collineation identity,

9 collineations of period 2,

80
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Complete Pappus Hexagon.

IV.

PERSPECTIVE TRIANGLES.—COMPLETE PAPPUS HEXAGON.

26. Having treated so fully the relations of the four inflexional triangles,

which are in six-fold perspective, we should show how to obtain sets of triangles

in the other perspective forms. Historically, it is of interest to note some papers.

In 1870, H. Schroter (Math. Annalen 2:553-562) set for himself the question

whether a triangle can be in more than single perspective with another triangle,

and if so, in what other forms. His paper is characteristically clear and easy of

reading, its method is synthetic, and it presents a construction for triangles in all

possible forms; viz., one-, two-, three-, four-, and six-fold perspective.

J. Valyi, whose paper was referred to in § 16, p. 17, set for himself in 1882

the same problem and reached the same results analytically without reference

to Schroter. Some other papers directly or indirectly presenting perspective

triangles are simply noted :

Rosanes: Ueber Dreiecke in persp. Lage. Math. Ann. 2:549.

Hess: Beitrage z. Theorie d. mehrfach persp. Dreiecke. Ibid. 28 :167.

Third: Triangles triply in Persp. Proc. Edinburg. Math. Soc. XIX, p. 10.

L. Klug: Desmische Vierseiten-Systeme. Monatshefte (1903) XIV, s. 74.

M. Pasch: Ueber Vier-eck und seit. Math. Ann. 26 : 211-216.

Caporali: Memorie, pp. 236, 252.

Veronese : Sull' Hexagrammum mysticum. Lincei Mem. II, 1 (1877), p. 649.

Triply Perspective Triangles in Circular Coordinates.

27. It is well known that two concentric equilateral triangles are triply

perspective. We take two such, first as point-triads, with coordinates of vertices

resp., 12 3 1' 2' 3'

1 o 0)^ at i^at oat

These two point-triads are in perspective thus,

12 3 having Center, and Axis of perspective

a, A,

/?, B,

y, r.

(17)

1'
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We name the vertices of the triangle of axes opposite correspondingly named
axes A, B, G.

The line 11' has coord.
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Complete Pappus Hexagon.

Thus we get the coordinates of axis

A to be [a<3_i, t{a—t% t^{l
—

a^)].

B " "
[«<'
—

!, i^H{a—t% o<2(i_a2)]. (22)
r " "

[«<'
—

1, i^t{a—t% GiH^il—a^)-].

From these we get the coords, of the vertices of this triangle of the axes thus,

a,H{a
—

t^) 6)^2(1— a^)

The meet of BF is J.= x=
at^—1 G>H{a—t^)
at^—1 at(a — t^)

{l—a^)t'
at^— 1

o _ G) (1
—

a^) t'^ _ G>^1 -a^)t'

(23)

C= x =Similarly,
'oF— 1

'
^ ^

otF— 1

Clearly these points form an equilateral triangle, concentric with the other three,

and ordered as 1, 2, 3. The radius of its circumcircle is

^^—')^ (ae-tia-{at^—l){a— ty
The radii of the four circumcircles are seen to form the proportion.

(24)

a \{al-V^{a-f)_ , 1 t^
{at^-l){a — t^)

or, in other words, the derived circles are a pair mutually inverse as to the same

circle as to which the original circles are inverse. Therefore, we may state the

theorem,

Two concentric equilateral triangles are in triple perspective with their centers

0/ perspective and the three axes also equiangular triads concentric with the original

two; and the radii of the circumcircles of the latter two triads are functions of the

radii of the original circumcircles and of the clinant of the angle between the given triads.

The product of the radii of the latter two circles equals the product of those of the

former two; hence, the circles are by pairs mutually inverse in the same circle.

The point-triads 1, 2, 3, and 1', 2', 3', are each in triple perspective with

a, ^, y, thus,

12 3 with perspective centers 1' 2'

1'a
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of perspective are a set of triads two and two in triple perspective with the points

of the third triad as centers.

Triangles 1, 2, 3 and A, B, G.

28. These point-triads as here written are in anticyclic triple perspective

with centers of perspective a', ^', y'. From coordinates (17) and (23) we write

the coordinates of the perspecting rays :

a—t^-.(l— a^)t 1— q<3-f (l_a»)f2 t{l
—

a'){t*-{-at^
— at—l)1^=

^Z^T' '
at'— l

'

{a
— t'){at'—l)

-^ ai^{a
—

f)
—

oi{\
—

a^)t 6^(1— a<^)4- q>^(1— o^)<'^ oit{\
—

a^){t^-\'Oiat—ai—cS)^^'
^r=^F ' at^—\ '

{a— t^){at^—\)

ai{a^t^)— 0,^1— a?)t ai^{l—at^)^ai{l—a?)e ftj''<(l— a^)(<^+ tt>^a<— a<— q>»)^^'
^"Z::?

'
a<8— 1

'

[a
— e){at^—\)

The determinant of these coordinates vanishes identically, therefore the three

lines meet in a point. From these and similar coordinates we find,

""

-^-a(a^3— 1)'
^ -""^

a(at'-l)'
^ - ^

a (a<«
-

1)

* ^^^^

The radius of their circumcircle is -* ~^-—«
—^yt lar* (26)

a \ {af^
—

l)(a
—

T)

The axes of perspective are found by taking the intersections of the sides thus,

12 3

A r B giving side of triangle 1' 2' 3' opposite 1'.

•p A p (( II II H it tt ol

p T> A (f H H (I tt tt ol

By the same steps we show that

Triangles 1', 2', 3', and A, B, O,

are in cyclic triple perspective with centers of perspective a", P", y", and axes

of perspective the sides of triangle 1, 2, 3 in order 1, 3, 2. The radius of the

circumcircle of a", ^", y" is

From a comparison of the radii of a^y (19), of a'^'y' (26) and of a"^"y''

(27), we may summarize thus:

The circumcircle of a, /?, y, which are the perspective centers
o/|i/ o' 3'P

"^^
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{1

2 31
A O b\^ u'Aoee axes are 1', 2', 3', are inverse

to the circle of 1, 2, S; also the circle of a, (3, y, and th/it of a'', /3", y", the centers

{V
2' 3'1

A T> n\i whose axes are 1, 3, 2, are inverse to the circle of 1', 2', 3'.

The reader can very readily draw the figure for all the steps above outlined,

so we leave that to him.

29. As a more interesting source of triply perspective triangles, and one

involving some considerations of the cubic, we present what we shall call

THE COMPLETE PAPPUS HEXAGON.

In Pappi AlexAndrini Mathematicae Collectiones^ a Federico Commandino

Urhinate as Prop. 138, p. 368, we read:

Si parallelae sint AB, CD, atque in ipsas incidant quaedam rectae lineae

AD, AF, BC, BF, & ED, EC, jungantur, rectam lineam esse, quae per GMK
puncta transit; and as Prop. 139, p. 368:

Sed non sint ABCD parallelae, & in puncto N conveniant. Dico rursus

rectam lineam esse, quae per GMK puncta transit.

These theorems Pappus proved by proportion, the equal ratios being

respectively between two lines and between the rectangles of two pairs of lines.

Salmon^ has the same theorem stated thus:

"If ABC are three points of one line and A!B'0 are three points of another

line, then the intersections BC'IEC, CA'/CA, AB/A'B lie on a line.''

The most important mention of the simple case is by Rudolf Boger,^ who

gives it as a simple form, free from the perspective relations, of Das Sechsech

in der Geometrie der Lage.

30. The complete figure is constructed thus :

The numbers 1, 3, 5, and 2, 4, 6, are regarded as the names of points or of

lines, each set of three lying on a line or a point resp. We consider the cross-

joins as follows:

1
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This means, when the six numbers are points^
that the line of 1, 2 intersects

that of 4, 5 in the point (l); the line 2, 3 cuts line 6, 6 in point (2); and 3,4/6,1

is the point (3); further, that point (1), (2), (3) lie on a line [1] which is one of

three lines similarly got and lying on point 2i . Observe there are nine lines,

such as 1, 2, connecting the two sets of three points each, which have not been

named. In the dual figure we shall call the nine points ai_3, /?i_3, 71-3.

On the figures, the six points shall be marked Tt^ and the six lines P^ ; the

points or lines (n) shall be marked simply n. For convenience in the analytical

work slight changes are there made as to names but these will be readily followed

on the figures throughout. Following the names given to points and lines in the

Pascal hexagon, the points 2i and ^2 are called Steiner points, whose line is S)

the lines P^ are called Pappus lines
;
and we call the lines Di and D^ Hessian

diagonals, which intersect in h.

31. As a convenient projection of the hexagon, we take the points nz^rii^y

Ttg on a line considered the axis of reals, and the points Ttj, Tta, 7^5 on the line at

infinity so that the lines from the three points on the axis to these three are

equispaced lines, parallel respectively

to x-=.ty x^iidty x^=-{^ty

going resp. to n^ Ttg itf,

Lines on ;r2= a: a!=<y— a{t— 1). x-==.(oty
—

a{ii)t
—

1). xz^to^ty
—

a{a)^t
—

1).

« "
714
= 6: x=zty—b{t—l). x= ioty—h{oit—l). x=za)Hy—h{o}H—\), (30)

" "
7Z'6= c: x=zty— c{t

—
1). x=zu)ty

—
c{a)t
—

1). x:=(o^ty
—

c{a)^t
—

1).

The points (p)
—

1>
=

1, 2, ,
9 — are in general thus,

.,,
. a—ba— (a—b)o>*+U

Tti^a With % b IS x r= -^—
1

;

and the points {q)
—

g-
=

10, 11, .'..., 18 — of § 30 are thus,

rti,o with %6 is a; =
^ _ 3

'

;

or points {q) are got from points {p) by interchanging b and c in the equation

where p-=.q— 9.

In the above, a and b each permute for a, &, c, but a is never b
;
and

t, j
are each 1, 3, 6, but i is never j in any one equation, a, 5, c are the general

points Ttg, 7t4, Tte along line D^.

These 18 points in 6 sets of three each, as indicated in §30, lie on six lines P^.

From the equations of points (^) and {q) we get the coordinates of the lines P.
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For lines Pi, where i = 1, 3, 6, we find coordinates are

P,: a-{-hQ)-\-ooi^,
—

{a-^ha}^-\-co})or*tf o)'^{ab-{-bca)-\-caaP)
—

{ab-^hca)^-{-ca(o)or*^H.

The coordinates of lines Pj, where y= 2, 4, 6, are

Pj: a-\-ho?-\-ciOy
—

{a-\-bo)-^cii?)ari^H, a) {ah -\-hcu)^ \- caio)
—

{ah-\-bcco-\-caa)^)arH.

The three lines P< lie on the point 2i ,
which is

X=. — 6)
ah -f &CO H- cao)^

a -\- hdi \- cu)^

and the three lines P, lie on the point Sg, which is

a + &w^ + CO)
jc = — a

These two points are evidently conjugate and therefore symmetrical as to

the axis of reals. Further, since the axis of reals, or Z>2, bisects the line between

Si and Sg, the two points 2 are harmonic as to the two lines D. They are the

Hessian pair of the three points Ttg, 714, Ttg.

Since the points 2 are independent of
t,

these points remain the same for

any three equispaced lines on a, h, c resp., mutually parallel ;
or keeping one

triad of points fixed the triad on the other line may move all along their line

subject only to the condition that the angles between the lines on the fixed points

remain constant. That is, 2i and ^2 are the same for all triads on the second line

having the same Hessian pair. Thus along the one line may be generated a

pencil of triads with the same Hessian pair by turning the equispaced triad on X,

each three points cut out at any instant being a triad of the pencil.

Reversing the Process.

32. Starting with the three lines P< on 2i and the three Pj on Sg, the lines

Pij intersect in nine points as follows :

n j3 ,
CL^— he -\- (a

—
h){a

—
6)0^ t

2a— — c

p D . ^^(^— ci^ + {o
—

a){c — b)G)t

Ac— a— o

p p . ^^ h^— ca -{- (b
— c)(h— a)t

26— c— a
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The remaining six may be written at once by comparing these three with the

following table :

Pi P, P,

Pi

a\ o"

x\ 1

.2
W, 1 c", o" a", 0)

The lines joining these intersections in pairs as indicated in §30 meet by
threes in points along D^ and Z^j, which are not in general the original points on

these lines.

The lines {q) to the three new points along B^ are given by the second lot of

three permutations (29) and have slopes respectively, ^^, w^^, o^^^; so they
turn just twice the angle from the axis as the original pair and are likewise

equispaced.

The lines (^) intersect by threes on three new points, TtJ, Tts, Tt^, along D^,,

corresponding respectively with a, h, c, in order along the external segment of

the line. They are,

a— h W— ca

x„ =
— a (?— ah

,
where a, 6, c, permute cyclically.

a — h 2b— c— a

c— a 2 c — a — b

33. Thus far the origin on the axis has been arbitrary. Now consider it

the centroid of the three given points, so that

a + 6 + c = 0,

whence also a^— bc=.b^— ca-=:. c? — ab

and be -\- ca -\- ab =^ — X, 2 a— b-

The three new points, TtJ, then become resp.,

a'k b'k

= \ say,

c = 3a, etc.

X = X :=
2bc -\- ca -\- ah'

*"

he— 2 ca + a5 '

The counter-triad of the three points a, 6, c, is

— 2bc -\- ca i- ah

X = cX

be -)r ca — 2 a6
*

be

3a
2ca -{• ah

36

be -\- ca — 2ab
3c

from (xa/bc) =: — 1
;
call it a'.

from {xh/ca) = — 1
;
call it h'.

from (xc/ab) = — 1
;
call it c'.

The cubic along the line a, 5, c is

x^— Xx— abe = 0.
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Differentiating this as to
a;,

we have

3 a:^ — X = 0,

the roots of which are the polar pair of infinity, the intersection of D^ and D^.

Calling the roots /and/', we have

/+ /' = 0,and//'=-/2 = -/'«=_|. ,./2 3^/'2 = |.

Then by comparing the above values of this paragraph, we see

n[a' = n',h' = nid=\;
so the new triad and the counter-triad of the original triad are in an involution

whose double-points are the polar pair of the intersection of the lines Di and D^
as to the original triad.

Further, starting with the new triad as we did with the triad Ttj, Tta, 7t^^

we shall secure a third triad nl^ Ttg, ni, etc. continuously, all these triads having
the same polar pair with respect to h and the same Hessian pair.

Thus, there is constructed, as it were, a syzygetic pencil of triads of points

along a line. For all the above there is of course its dual, giving a corresponding

pencil of line triads on each of two points.

34. From the Complete Pappus Hexagon we have the following theorems

with their duals :

I.

Three lines P^ on each of two points Three points Tt^ on each of two lines

2i, ^2, joined by the line S, intersect Z^j, D^, meeting in the point 5, are

cross-wise in nine points ai_3, ft_3, cross-joined by nine lines which meet

yi_3, which join by 18 lines, which are in eighteen points, 1-18, which are the

the sides of two sets of three point- vertices of two sets of three line-triads

triads each. each.

The triangles of each set are inter se The triangles of each set are inter se

in triple perspective, having as centers in triple perspective, having as axes of

of perspective the points 2i and Sg each perspective the lines D^ and D^ each

three times, and three points Tt^ on the three times, and three lines P^ on the

line D2 or D^ resp.; and having as axes point X^ or 2i respectively; and having
of perspective the line D^ or D^ three as centers of perspective the point 2i or

times each for the sets resp., and twelve ^2 three times each for the sets resp.,

other lines all of which pass through a and twelve other points all of which

point e, which is the pole of the line S lie on a line E^ which is the polar of

as to any of the six triangles. The 18 the point h as to any of the six triangles,

lines above lie by three on six points The 18 points lie by three on six lines

Ttj, which are three and three on the P^ which are three and three on the

lines Z>i and D^ above. points 2i and Sg above.
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II

The lines Z^j, D2 and S are the false The points 2i, ^2 ^^^ ^ ^^^ the false

sides of the complete quadrilateral of vertices of the complete quadrangle of

the Hessian pairs of the line-triads P^ the Hessian pairs of the point-triads

on 2i and on ^2 • Tt^ on D^ and on D^ .

From these follows the general theorem, as also from the demonstration

of §§31, 32.

III.

Three lines on each of two points give rise to three points on each of two

lines, and the latter by reciprocating the process give rise to three lines on each

of the original two points. The derived three lines have the same Hessian pair,

or are inclined to each other at the same angle as the original three.

35. We now give a proof of the theorems on the left. Take the two

Steiner points 2i , ^2, to have coordinates 0*1, Cg, Cs and $1, $3, $3 resp.; the

triangle aia2a3, formed by the intersections of the Pappus lines as will be

shown, as reference triangle; and the line S as auxiliary line.

The line S determined by 2i and X2 is given by

=:
0, and will be written

SiXi -f ^3X2 + S^Xs = 0.

Since this line is taken as auxiliary line

^1=^^2=^3=1; O-i -f (Ta + (Tg
=

0, $i + $2 + $3 = 0,
/g-j^x

also $? Cj Gk
—

5V S/fc
(J i
= C* 5"*

—
cij Sj ,

where
i, /, h are each 1, 2, 3 successively.

The equations of the Pappus lines are the corresponding minors as re-

presented thus,

P\ P^ Pb Pz Pj Pfi

^1 <^2 <^3 il $2 $3

Xi X2 2^3 Xi X^ Xg

Their respective intersections, corresponding with the nine points P^j of

§ 32, have coordinates :

ai: (1,0,0), a^: (0, 1,0), a,: (0,0, 1),

A: (o'lSi, o'i$2, <^3$i), ft: (<^i52> 0'2$2j <^2 53), ft: ((^sSi, <Ja5'3, 0'3$3), (32)

r1 (<^l 5l , 0-2 5l , (^1 $3), 72 '
(<^2 5l , (^2^2, Cr3 $2), ^3 '

(<^1 ^3 , <5'3 $2 > <^3 $3)'

a-i



meet lines
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whose vertices as shown in (33) are, for each triangle, joins two and two of all

six lines on 2i, Sgj and so the triangles are cubics passing through the same

nine points.

The triangles of each set are mutually in triple perspective. The three

centers of perspective are first Tt^, n^, tIq, as the coordinates of lines (34) show,

and Xi, X2 each three times as seen from the naming of points in (28) and (29).

The centers for the second set are similarly Ttj, n^, n^, and 2^, ^2 each

three times.

The axes of perspective are clearly, once for each two triangles of the first

set, the line D^ ,
and once for each two of the second set, the line Z^g . This

accounts for six of the eighteen axes. The remaining twelve are as follows :

^ ^

u 00 u u u )n'
^'

\ Whence, Axis I has coordinates

aa«:
" M. " " "

{-r^,0,C,).
(<'^. "a, 'i),

for by subtracting second row of the determinant from the first row, and the

third from the second, we have

111
1 1 1

—
(Tj (Ta

ttittg and /?3/?i meet in point ($1,
—

$3, 0).

aga3
''

ftft
'^ '' ''

(0,S2,-Si).

(TgCTi = 0,

Whence Axis II has coordinates

a,a,
"

13,13,
" " "

(-;,, 0, fs).
fe, Si, «.)•

Thus in order as indicated, we have the triply perspective triangles :

Triangles. Centers. Axes of Perspective.

8 3/3 J
^' ^^' ^^* ^^' ^^^' ^^' ^^^' ^^^' ^^' ^^^*

tti ttg ag

Aft ft

7\ 7% rs

tti /?i yi

"2 ft /2

a2ftr3

asftya

0^3 ft /3 1 >r 'e T\ I \ I \

aifty J
^^' -^IJ -^2- ^^1 \P\^ 0'3j <^2), Ul, $3, $2)-

\ Tti, Si, Sg. A, ($2; $3, $1), (<^3, <^1, ^%i'

fk, ^2, Si. A, {<fi, ^2, <Ja), (Si, ^2, 53)-

7«1, Sg, Si- A, (0*2; <^1, <^3), {^2, Si, is)'

7*3, ^2; 2i. A> fo, $2, $1), (<^3, <^2; ^^l)-
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The twelve axes other than 2>i and Dg are seen to pass through the point

with coordinates (1, 1, 1), which is thus the auxiliary point e, the pole of aS' as

to the reference triangle. Since

S has the same pole, e, as to all point- h has the same polar, E, as to all line-

cubics consisting of three joins of the cubics consisting of three joins of the

six lines P^, two and two, six points 7t(, two and two, (Salmon:
H. P. C, §166, pp.143, 144),

e is the pole ofS as to every and any E is the polar of h as to every and any
of the six triangles on all six lines P^. of the six triangles on all six points Ttj.

The 18 lines have already been shown, (34) and (36), to lie by threes on the

six points n^ which are on the lines D^ and Z>g three and three.

The lines A and D^ as diagonals or false sides of the complete

QUADRILATERAL OF THE HeSSIAN PAIRS.

36. The following linear relation exists as to the three lines P^ on 2i,

Cl ((Tg iCg
—

(T3 X^) -f (Tg (Cg X^
—

(Ti ag) + (Tg ((Ti Xg —<^2^l)=^'

The Hessian covariant of the binary cubic is given by the sum of the squares of

these terms separately, and the imaginary Hessian lines are

(Ti ((Tg a^g
—

(Tg Xg) + 6) CTg ((Tg X^
—

(Tj X^ + id^ (Tg ((Ti X^,
—

(Tg Xj)
=

0,

and ffi ((Tg OTg
—

(Tg arg) + 6)^ (Tg ((Tg x^
—

(Tj iCg) + 6) (Tg {a^ x^
—

(Tg Xi)
= 0.

These two and the analogous two on 2g may be written in reduced form

respectively
(Tg(Tga:i + 6)(Tg(Tia:g + (o^(TiCrgiCg=0, ]l)

(^zO^Xi -f G)^(Tgcria:2 -f cj(Ti(TgiCg
=

0, { 2[

Sggga-i + cjSggiiCg-f (j2$i$2a;3
=

0, j3f

$g5'3iBi + a)2$g$iiCg + G)$i$2a:3
= 0, J4[

These intersect as follows :

|1} and
1 3} in imaginary point J: (<TiCi, o>^<J'i<:%, (oa^z^).

{2|
«

j4}
" " "

J'.{a,<:,,oya^z^,to''a,<:^).

\1\
"

{4}"
" " IT: (<riCi[<'2C8 -0X^3 C2], <'2 face's Ci-tt'^^ifs], <^8C8KC2-w<y2Ci]).

|2|
"

{3|
" " " £': (<Tifi[<T2C3-w''<y8C2], <'2C2[<'8Ci-o>^<'if3], '^sCsL'^iCz-^^aCi]).

The line 7/ is the real line D^ given by (35).

The line -£?^ is the real line D^ given by (37).

Therefore, D^ and Dg are the diagonals of the imaginary quadrilateral of the

Hessian pairs of the line-triads on 2i and Sg.



Hexagon of three equispaced lines on each of two points. Theorem VI.

Hexagon of three points on each of two lines. Theorem I.
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Theorem III. follows without further proof.

37. As may be seen from Fig. 3, for the reverse or dual process the three

line-triads of a set are mutually in triple perspective thus :

Triang^
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39. The special forms or arrangements for the three lines on each of two

points to which attention is called are,

(1) Two sets of equispaced triads; i. e., lines at angles of-^.

(a) The points being the two equiangular points of the triangles

of one set of three.

{h) The points being on the circumcircle of equiangular triads.

(2) The points taken at infinity,

(a) arbitrarily, giving two sets of three parallel lines each, at an

angle 3^ with each other.

(6) at the circular imaginary points of the plane, giving two sets

of perpendicular lines.

These various forms are handled analytically best by using special coordinate

systems for the several cases, and furnish nice work in devising expeditious

methods. I omit as irrelevant the various methods that were employed.

40. From these special forms we have the theorems,

VI.

For a triad of equispaced lines on each of two points, one set of the three

point-triads consists of equiangular triangles with sides respectively parallel

(Fig. 4). Thus one of the lines D is at infinity and the other is perpendicular

bisector of the line S between Sj and ^2. Further, the circumcircles of the

three equilateral triads pass through Si and Sg, and those of the other set of

three triangles intersect in
e,

the pole of S as to any of the six triangles.

VII.

If to the conditions of the previous theorem we add that one of the set of

scalene triangles is also equiangular, then the vertices of the other two triangles

of its set are inverse points as to its circumcircle, and all the circumcenters of

the set of three equilateral triangles are on the finite Hessian diagonal D.

Theproof of this last theorem is especially neat by use of circular coordinates

Finis.
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